CONVERSION OF LACTONE INTO LACTONE HEMITHIOACETAL AND SYNTHESIS OF ENOL LACTONE

Masahito OCHIAI, Kiyoharu NISHIDE, Manabu NODE, and Eiichi FUJITA* Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611

Lactone hemithioacetal was synthesized in good yield from ω -phenylthio-carboxylic acid derived from lactone, and it was converted into enol lactone via the corresponding sulfoxide.

The introduction of functional groups into the α -methylene group of lactone has been well established, because of the easy formation of its enolate anion. We now wish to report phenyl-sulfenylation at the ω -methylene group in lactone 1 followed by the conversion of the product 3 into enol lactone 4 as shown in Scheme.

Scheme

Five- or six-membered lactone was transformed into the corresponding ω -phenylthio-carboxylic acid 2 in acceptable yield by treatment with benzenethiol and Lewis acid (AlBr3, BBr3, or tri-n-butyltin triflate). The reaction required longer time and higher temperature compared to that with alkanethiol and Lewis acid, because of lower nucleo-philicity of benzenethiol than that of alkanethiol.

Successive conversion of the acid 2 into lactone hemithioacetal 3 was easily achieved by intramolecular cyclization reaction; the acid 2 on treatment with N-chlorosuccinimide in toluene or carbon tetrachloride under nitrogen afforded $\frac{3}{3}$ in good yield. The stereoisomers of $\frac{3}{3}$ c obtained from acid $\frac{2}{3}$ c were easily separated by preparative TLC in a 1:1 ratio.

Oxidation of 3b and 3e with MCPBA followed by elimination by heating the resulting sulfoxide

Table Conversion of lactone 1 to lactone hemithioacetal 3 via ω -phenylthiocarboxylic acid 2

ring opening of lactone \tilde{l}^a						Pummerer type reaction of 2^{b}			
1		Lewis acid	(yield %	(s) ^c 2		reaction time (h)	(yield %)) ^c	
ů,	la ~~	(n-Bu)₃SnOTf ^d	(54)	CO ₂ H SC ₆ H ₅	2a ~~	0.5	(83)	ǰ	3a ~~
C_6H_5 C_6H_5	1b	BBr ₃	(69)	C ₆ H ₅ CO ₂ H SC ₆ H ₅	2b ~~	1	(00)	$\begin{array}{c} SC_6H_5 \\ C_6H_5 \\ \end{array}$	3b ~~
\bigcup_{H}^{0}	1c ~~	AlBr ₃	(49)	002H	2c ~~	1	(86)	SC ₆ H	3c
	1 <u>d</u>	AlBr ₃	(31)	CO ₂ H SC ₆ H ₅	2d ~~	0.5 ^e	(55)	SC ^e l	3d ~~
	le ~~	AlBr ₃	(49)	CO ₂ H SC ₆ H	2e ~~	2 ^f	(65)		3e ~~ C ₆ H ₅
<u>l</u> e		BBr ₃	(49)	2e ~~					

a) Reaction was carried out in benzenethiol unless otherwise noted. b) Acid 2 was treated with one molar equivalent of NCS in toluene at ambient temperature under nitrogen unless otherwise noted. c) Isolated yield. d) Co-solvent: dichloromethane. e) Reaction solvent: a 1:1 mixture of dichloromethane and carbon tetrachloride. f) Reaction solvent: carbon tetrachloride.

gave rise to enol lactones $\frac{4b}{6}$ and $\frac{4e}{6}$ in 70% and 63% yield, respectively. As expected, the sulfoxide derived from $\frac{3c}{3c}$ (α -SC₆H₅) showed no change on prolonged heating in carbon tetrachloride. However another sulfoxide obtained from $\frac{3c}{3c}$ (β -SC₆H₅) produced an unstable enol lactone $\frac{4c}{3c}$ which was isomerized to $\alpha\beta$ -unsaturated lactone $\frac{5}{3c}$ during isolation by preparative TLC (62% yield).

References and Notes

- 1) M. Node, K. Nishide, M. Sai, and E. Fujita, Tetrahedron Lett., 1978, 5211.
- 2) C. G. Kruse, E. K. Poels, F. L. Jonkers, and A. van der Gen, J. Org. Chem., 43, 3548 (1978).
- 3) The addition of triethylamine in order to scavenge hydrogen chloride produced during the reaction gave somewhat lower yield of 3.
- 4) 3c; αSC_6H_5 : NMR δ 5.63 ppm (1H, d, J = 3.9 Hz, $\sim CH SC_6H_5$); βSC_6H_5 : NMR δ 5.44 ppm (1H, d, J = 2.2 Hz, $\sim CH SC_6H_5$).
- 5) D. Butina and F. Sondheimer, Synthesis, 1980, 543.

(Received December 24, 1980)